

Journal of Computer Science and Information Technology

https://jcsitech-upiyptk.org/ojs

2021 Volume 7 Hal: 82-93 e-ISSN: 2502-1486

A Mathematical Approach to Healthcare Insurance Data Analytics

Terungwa Simon Yange^{1™}, Ishaya Peni Gambo², Theresa Omodunbi² and Hettie Abimbola Soriyan² ¹Department of Computer Science, Joseph Sarwuan Tarka University, Makurdi, Nigeria ²Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria lordesty2k7@ymail.com

Abstract

The emergence of big data analytics as a way of deriving insights from data has brought excitement to mathematicians, statisticians, computer scientists and other professionals. However, the near absence of a mathematical foundation for analytics has become a real challenge amidst the flock of big data marketing activities, especially in healthcare insurance. This paper developed a mathematical model for the analytics of healthcare insurance data using set theory. A prototype for the model was implemented using Java Programming Language, MapReduce Framework, Association Rule Mining and MongoDB. Also, it was tested for accuracy using data from the National Health Insurance Scheme in Nigeria with a view to reducing delays in the processes of the Scheme. The result showed that the accuracy level was 97.14% on average, which depicts a higher performance for the model. This result implies that delays affecting the processing of data submitted by the providers and enrollees to the HMOs reduced drastically leading to the improvement in the flow of resources.

Keywords: Healthcare, Insurance, Data, Big Data, Analytics, Mathematical, Set Theory.

1. Introduction

One important resource that drives organizations through the use of information technology is data. It represents facts on people, things, ideas and events using symbols such as letters of the alphabets, numerals or other special symbols [1][2]. The advancement in technologies to capture and store both structured and unstructured data have led to tremendous increase in the quantity available known as big data [3]. This vast volume of data needs to be transformed into information and knowledge to derive benefits from it, (i.e. big data analytics). The advent of big data analytics has brought exciting aspiration in the field of computing. This is one of the leading edges for innovative research and development in computer science, industry and business [4]. This has also assets for organizations, better outcomes and decision making [6].

Healthcare insurance is one out of the many sectors that are currently drowning in data [7]. It covers the entire or fragment of the risk of a patient incurring medical

expenses, spreading the risk over a large number of persons [8][9]. By estimating the total risk of healthcare and other expenses in the healthcare system over the pool of risk, an insurer could develop a routine finance structure, such as a monthly premium or payroll tax, to provide the money to pay for the healthcare benefits specified in the insurance treaty. The benefit is administered by a central body such as a government agency, private business, or charity organisations [8][10]. The benefits of the healthcare insurance are managed by a central body such as government agencies, private businesses, or not-for-profit entities. The primary aim of data analytics here is to investigate the cost of healthcare services rendered (i.e., payment made for healthcare services by the health insurance)

industries, In Nigeria, the National Health Insurance Scheme entrepreneurs, businesses, individual lives and the (NHIS) is the agency that is saddled with the security of a nation as it derives meaningful insights responsibility to administer health insurance. It was set which hitherto was difficult and time consuming. Even up by the Federal Government of Nigeria to provide with the advent of big data analytics, many universal access to quality healthcare service in the organizations are still drowning in data due to the lack country. It covers civil servants, the armed forces, the of appropriate tools for the analytics [5]. Although data police, the organized private sector, students in tertiary analytics hinges on mathematics and statistics, there institutions, the self-employed, vulnerable persons, and has not been a sound universal mathematical the unemployed, among others [9]. The beneficiaries framework for for the analytics of healthcare insurance are required to pay a premium to NHIS, which is used data [4]. Consequently, having a mathematical model to pay for their healthcare services once they visit the could go a long way in the abstraction of the facility. This Scheme, though at its infancy, is faced technologies, systems, tools for data management and with several challenges that some researches have processing that transforms data into useful insights for established the dissatisfaction of beneficiaries, especially delay in services delivery [12][13]. This has significant adverse effects on the quality of care and patient safety.

data analytics was developed using Set Theory for the are not going to discuss the other types of healthcare processing of healthcare insurance data. The NHIS was data. used as the case study. This has increased the effectiveness and efficiency of the scheme, and also guard against the danger of sustaining medical Healthcare insurance companies and other medical expenses among individuals, thus, plays the most vital insurance providers have a wealth of data at their role in the improvement of healthcare quality. The disposal [19]. Operations in this area produce varying improvement of healthcare delivery would aid the amount of information, especially operational data, and healthcare insurance in Nigeria to achieve its set targets also other more persistent forms of data, such as for ensuring the universal health coverage and the demographics, healthcare provider's location, and other provision of quality healthcare towards the realization essential data to accurately carry forward all business of the National Health ICT Strategic Framework 2015- processes [20]. The non-operational data can be 2020 of the Federal Republic of Nigeria.

The rest of the paper is organized in the following order. Section two gives the review of related works The operational data in the healthcare insurance well as the conclusion for the paper.

2. Review of Related Works

patterns in data [15].

Big data analytics provide the understanding of the relationships underlying vast amounts of data from The information on each claim is categorized into four different datasets and consequently provides useful classes: beneficiary information, provider information, insights for decision-makers in organizations to create claim header and claim details [22]. Features of the new business value that would also improve the quality claim are mined from these categories of information. of services they render so as to satisfy their clients. This Beneficiary and provider information span across the has increased the demand by most organizations for big whole claim, and it also provide information about the data analytics tools to predict market trends, optimize patient, and the provider (hospital, doctor, or medical warranty and insurance claims, and mobilize customers facility). The claim header gives information about the [16].

The healthcare data can be broadly categorized into four groups [17]: clinical data (patient health records, medical images, laboratory and surgery reports etc.); patient behaviour data (collected through monitors and wearable devices); pharmaceutical research data (clinical trial reports, high throughput screening results); and the health insurance data which is the main Healthcare insurance data are complex, and generating with the modern healthcare system [18]. In this paper, collect because of outdated and misaligned incentives,

In this paper, a mathematical approach to healthcare our interest is on the healthcare insurance data, thus, we

2.1 Healthcare Insurance Data

operational at some points in their lifetime. Therefore, our interest in this research is on the operational data.

while Section three presents the methods deployed in includes: referrals, enrollment, claims, capitation and achieving the purpose of the paper. The results are other forms of payments which could sometimes be presented in Section four. In Section five, the regarded as a report from the physician or healthcare discussion of the results is presented, and Section six provider to the insurance company [19]. According to gives the unique contributions of this article, limitations [20], claims are managed primarily for the of the research and some future research directions as administration of payment for healthcare services delivered by healthcare providers and facilities. A claim informs all the details of a patient's visit or medical procedure. Even though the data about claims Any data that cannot be easily handled by traditional may vary, it generally contains an ID of the healthcare data processing tools like relational databases is known professional involved in the procedure (it may also be a as big data [11]. It is characterized mainly by its large group of professionals), and ID of the patient who was volume, high velocity and increased variety which treated and a timestamp corresponding to the moment makes it difficult to be processed using orthodox data the event took place. In other words, claims data is management technologies. The Analytics of Big Data designed to hold only those pieces of information that involves searching through huge dataset with the aid of are required to facilitate payment by an insurance sophisticated tools to identify undiscovered patterns company: what service was provided, the diagnosis, and establish the existence of hidden relationships who was the service provider, how much money is within the dataset. In other words, it is the discovery, owed for that service. Further vital information is interpretation, and communication of meaningful usually added, such as which types of health services were delivered, and the associated costs owed for the insurance company to process, among others [11][21].

> entire claim: contact information, amount billed, diagnosis codes, dates of service and many others. The claim details give the specifics of each line in the claim. It is used to itemize each procedure that was conducted on the patient in the claim. For each procedure, the claim line includes the amount billed, the procedure code, the counter for the procedure [21].

source of the cost associated with healthcare which is useful insights from them cannot be done without a vital to addressing the economic challenges associated sophisticated clean-up. This data is also challenging to doctors or hospitals can be inconsistent without timestamps or with incorrect values [7]. sophisticated data science detective work.

2.2 Challenges with Healthcare Data

In order to get a clearer understanding about the data analytics techniques that are needed for processing healthcare data, it is of utmost importance to comprehend the challenges presented by healthcare data [23]. These challenges are discussed as follows.

huge, requiring large storage space which ranges from comparison. Events may be associated with multiple petabyte to zettabyte. The sizes of these repositories are timestamps: for example, a medication event has a not just in the number of patients but also in terms of timestamp for when it was ordered and another for each the data elements stored in them [7]. With the time it was administered. The data includes not only the numerous features of these databases, there comes the relative sequence of events but also the actual time of issue of "curse of dimensionality" most especially each event, something that many current sequence when dividing the patient populations using multiple mining algorithms do not consider. Finally, an filters. Besides, in most instances, data analytics additional problem is concurrent events [3][18]. In the techniques come with a finite array of features (e.g., x- clinical setting, the care team may submit multiple lab position, y-position, colour etc.) which represent this tests and medication orders at once, in various multiplicity of variables. This data is distributed across combinations. This makes it hard to form the true the electronic records of different departments sequences. including billing, administration, clinical care and even medical devices. Processing these amorphous and complex datasets can be tasking and Over the years, NHIS has developed some manual time-consuming [21].

Variable Semantics and Number: Data in the healthcare industry is amazingly inconsistent, both semantically and numerically. Semantically, electronic health record data encompasses diverse classes of variables and events. While a particular demographic feature (such as Date of birth) could be represented as a single attribute for a particular patient, events are more complex. An outcome of an event may be an associated measure and a timestamp. A medication treatment event might require the drug name, dosage, form and route of administration along with multiple timestamps representing each time it is taken. Administrative events might simply be a timestamp indication, for The primary purpose of data analytics in healthcare many different data types. Some variables are payments traditional one-table structure consisting observations and attributes.

Irregularity: This refers to inconsistency, noisiness and incompleteness in healthcare insurance data. The inconsistency here means the variation in the format

leading to prohibitively high prices to obtain and store that this data is presented. The data is sometimes the data. They are notoriously dirty [20]. Finding structured, semi-structured and unstructured. Noisiness meaningful events from this data is very hard to do here means the high rate of errors in the data. This may without building complex models to group these occur as the result of improper logging of data into the specific codes, and attributing claims to specific EHR by healthcare personnel, either at wrong

Temporal Richness: Another obstacle that characterizes healthcare data is its rich temporal domain which prevents the breakdown of data into simple rows and features onto which traditional clustering, classification, and prediction tasks can be applied. Instead, a patient may have hundreds of tests performed medications administered in sequences. Moreover, the sequences may be of Large Volume: Healthcare repositories are often very different lengths, precluding a simple item-by-item

2.3 Healthcare Insurance Data Analytics

measures for identifying, investigating, and fishing out issues with data submitted by providers [24]. The experience, insight and intuition of these claims personnel have saved NHIS some monies in payments over the years. However, as good as this manual process is, the shortage of trained personnel to review every claim has been a significant problem. Thus, there are so many fraudulent claims that slip through the cracks. As a result, payments are sometimes made that should not be. This lack of many trained eyes to quickly identify fraud in claims has also culminated in the delays in the processing of claims, referrals, enrollments among others [25][26][27].

example, when the patient was admitted. Also, there are insurance is to checkmate fraud, waste and abuse of done for healthcare categorical, some ordinal, some continuous and some in [11][28][29][30]. Fraud is knowingly and wilfully date and time format [23]. Also, the number of these carrying out or trying to implement, a scheme or variables is not constant as there might be a few or artifice to trick any healthcare benefit program or to dozens of drugs administered to a patient during a obtain (with the aid of false or fraudulent pretences, single admission. This leads to a relational database representations or promises) money or property owned structure requiring multiple tables, instead of the or controlled by any healthcare benefit program. Waste of refers to the overutilization of healthcare services or other practices that directly or indirectly, culminating in unnecessary costs to the healthcare insurance program. In most instances, waste is not considered as negligent actions by fraudsters but rather the ill use of resources. Abuse comprises actions that may directly or indirectly,

to that payment, and the provider has not knowingly processing. and intentionally misrepresented facts to obtain payment [25]. The distinction between fraud, waste and abuse depends on specific facts and circumstances, intent and prior knowledge, and available evidence, among other factors. Thus, in this research, they are all treated as fraud.

an Independent Mathematical Expressions for the also helps in reducing the treatments and readmissions. analytics. In most works, a soft computing algorithm is customised to fit the problem of interest.

for medical imaging data (especially functional insurance claims by identifying correlation or magnetic resonance imaging - fMRI) using Big Data association between some of the attributes on the claim Spark/PySpark platform on a single node which helps documents. With the application of a data mining to read and load imaging data, convert them to RDDs in techniques of evolving clustering method, association order to manipulate and perform in-memory data rule mining and support machine, this study was able to processing in parallel and convert final results to successfully determined correlated attributes to address imaging format while the pipeline provides an option to the discrepancies of data in fraudulent claims and thus store the results in other formats such as data frame. reduce fraud in health insurance. However, the study This was with the view of addressing big data analytics was used for structured data which made it unfit to be challenges in medical imaging which is a pillar in applied in big data which is highly unstructured. With diagnostic healthcare deals with high volume of data the numerous data mining techniques implemented collection and processing. The results revealed that traditionally, it would consume more resources when Spark (PySpark) based solution improved the applied to big data. performance (in terms of processing time) around four (4) times on a single compared to the previous work developed in Python.

In a similar vein, [36] considered issues with big data analytics frameworks based on Hadoop/MapReduce. In this work, it was stated that these approaches cannot meet some vital requirements like scalability, security and large real-time streaming, because of some issues with I/O cost, algorithmic complexity, low-latency streaming jobs and fully disk-based operation. They proposed a scalable, secure and real-time healthcare analytics framework with apache spark. In this

bring about unnecessary costs to the healthcare framework, Spark streaming was used to handle insurance program, improper payment, payment for massive streaming data coming from streaming services that fail to meet professionally recognized sources. On the other hand, SparkML was used to standards of care, or medically unnecessary services handle big static datasets coming from static data [25], [28], [31], [32], [33]. Abuse consists of payment sources, and also for recommendation and diagnosis for items or services when there is no legal entitlement based on structured and unstructured knowledge

Karthika and Porkodi [37] developed a fraud claim detection framework using Spark. Here, electronic health and medical data is used for detecting fault occurrence in healthcare insurance companies. Each patient is assigned with unique patient ID across the database. Apache spark is used for processing instantly Nigeria has a peculiar situation in combating fraud in on regular updates in medical records and finds the health insurance data as the process is entirely manual fraud occurrence by using map transformation, and [24][26][28][29][30]. This has given rise to most of the reduce transformation is used to find records across the issues we have in the scheme today. The fear of entire database. A rule-based model and Machine financial leakages due to fraud is the key issue learning algorithm is used for automating the process, hampering the proper implementation of NHIS. and result displays patient ID, city, time, hospital of Therefore a proper analytics tool must address fraud to patient in the claim. With this, fraudulent claims are curtail the other issues which are dependent on it. Most reduced and it is most accurate when compared to the works done in the analytics of healthcare insurance data existing systems. In the existing system (manual in other countries have been in the area of combating system), it took 22hours to process the data which is fraud. Though other aspects like the collection of data received on a single day. But the proposed system takes have been fully automated and hence, there are no only 20 minutes to process the real-time data which issues with regards to delays in the processing of the makes the detection of fraudulent claims very fast and other data [24][26][28][29][31][32][34]. Many works highly accurate. Fraudulent claims were identified have been done in this area but none has come up with based on patientid details displays in dashboard. This

Also, [38] developed a data analytics framework for Health Insurance data using Association Rule Mining. Sarraf and Ostadhashem [35] developed a new pipeline The researcher was able to detect fraudulent health

2.4 Mathematical Approach to Big Data Analytics

No matter how difficult a computational problem is, once reduced to some mathematical formulae or equations, it is better understood. In other words, the use of mathematics or logic to specify or verify the features of a system could further demystify the issues surrounding the design of such system. Big data analytics is not an exception to this. According to [4][39], there are no sound mathematical foundations for data analytics and this has presented serious challenges to the development of systems for big data analytics in many sectors. To curtail this problem,

understand with ease. According to mathematical reasoning increases a software developer's competence. The lack of formal methods for specifying big data analytics solution is the reason This section discussed the collection of data and the responsible for the non-availability of sound data formulation of the model. analytics tools in some areas such as the healthcare insurance. For instance, once the mathematical model for the analytics of healthcare insurance data is The processing of NHIS data is a complete task which analytics of this will naturally be addressed [4][39][41].

In most of the works [35][36][37][38] reviewed above, none considered the development of a mathematical model for healthcare insurance data analytics. All they did was the implementation of some soft computing algorithms for the processing of data. But expressing a big data analytics problem using some systems of mathematical equations would better arm the data scientist with a tool similar to that of a hammer in the hands of the carpenter where every thing looks like a nail and wood; thus, every analytics problem becomes solvable.

assures the subject of a place prominent in human formats is shown in Fig. 1-4. culture which is the environment where mathematics

calculus and set theory are very pivotal towards the takes place today. As such, it is expected to provide a establishment of a firm mathematical foundation for big firm foundation for the rest of mathematics. Because data analytics. The universality of the mathematics the fundamentals of Set Theory are known to all provides approaches to problem solving that developers mathematicians, basic problems in the subject seem [40][41], elementary [44][45][46].

3. Research Methods

3.1 Data Collection

developed, every other issue concerning all the is manually carried out by a few personnel who have the responsibility of approving, modifying or rejecting these requests within a limited period from their reception. This has resulted in unnecessary delay in the process. These delays in processing the transactions of the scheme have been a discouraging factor in embracing the scheme. The implication is that the number embracing the scheme tends to be reducing or not encouraging. Collecting this data was one of the most difficulty in this work because most of the data were collected manually by NHIS through HMOs and stored in file cabinets. This was done via document examination and observation, which in either case, the data was collected from journals and NHIS databases. inherent in decision making could be of help. The set The categories and features of the data collected are theory is of great importance in this regards and it presented in Table 1 and the sample data in different

Table 1. Data Categories

Data Category	Description					
Enrolment	Provider: Name, Address, Telephone, Fax/Phone, Email, Type of facility, Category of registration, State registration no, Name of Director, Name of supervising Medical Director (If applicable), Affiliated HMOs, Affiliated Insurance companies,					
	NHIS registration number, Incorporation/business registration.					
	Beneficiary: Name, Address, Date of birth, Sex, Next of Kin, Email address, Mobile, Telephone no. fixed, National ID no,					
	Employer NHIS no., Date of NHIS registration, Nationality, Location of Posting, Photograph, Blood group, Genotype, Allergies, Relationship (Principal, Spouse, Child, Extra-dependent), Expiry date, Primary provider					
Payment	Claim: Name, NHIS No. of patient, Name and NHIS No. of patient's primary provider, Name and NHIS No. of Secondary Provider, drug prescription sheet, Diagnosis/disease code, Treatment given, Date of treatment, amount billed, Co-payment received (when applicable).					
Update	Addition of dependent, change of facility, change of HMO					
Referrals	Referral request, approvals, rejections					

3.2 Mathematical Formulation

concept of searching which seeks to find patterns in a cause-effect relation hidden in observation data is not set of data; that is, it believes that patterns exist in clear to specific data users. These relationships are best every large collection of items. Much of big data described using set theory. The theory is about analytics tasks involves searching for structures or members and their relations in a set is general enough items that are hidden within large and complex to deal with data analysis and problem-solving. In a datasets. The concept of big data analytics involves the sense, relations among set members corresponds to the collection of large datasets similar to the haystack;

there also, exist some small datasets within the given large datasets similar to the needle, existing together according to an unknown relationship. Usually, the data The formulation of the proposed model is based on the producers are quite different from data users, so that the association in big data.

YB/0020	Ajiko Medical Center	9	+	20	+	0	=	29
YB/0022	Potiskum Medical Clinic	7	+	28	+	0	-	35
ZF/0001	General Hospital, Anka	1	+	0	+	0	=	1
ZF/0002	General Hospital, Bakura	1	+	5	+	0	-	6
ZF/0006	Daula Hospital & Mat. Home	14	+	16	+	0	=	30
ZF/0009	Gusau Medical Clinic	0	+	4	+	0	-	4
ZF/0019	General Hospital, Talata Mafara	1	+	1	+	0	=	2
ZF/0021	Federal Medical Centre Gusau	75	+	151	+	0	=	226
ZF/0027	Federal Polytechnic, Kaura Namoda	1	+	2	+	0	=	3
ZF/0029	Yariman Bakura Specialist Hospital	1	+	0	+	0	-	1

Fig 2. Excel File

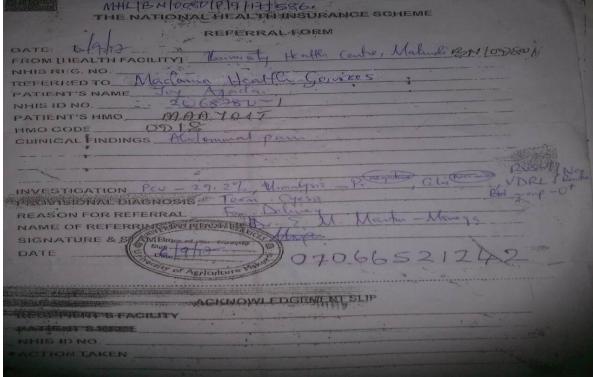


Fig 3. Hand Written document

MHL/FCT/0478/P/12/13/105,,,,,,4500.00,ATOPIL DERMATITION,2227.20,NOT AUDITED,NOT PAID,UATH,,,,,Dec-13,,,MAGAJI,HAFSAT MHL/FCT/0478/P/12/13/106,,,,,,49050.00,MULTIPLE SCLEROSIS,30967.40,NOT AUDITED,NOT PAID,UATH,,,,,Dec-13,,,OGUNJUYIGBE,BOMHL/FCT/0478/P/12/13/029,,,,,21700.00,LOW BACK PAIN,6700.00,NOT AUDITED,NOT PAID,UATH,,,,Dec-13,,,OLOWOOKERE,ORIMOLOYE MHL/FCT/0478/P/12/3/16,,,,,,2600.00,CCF 2ND TO HTN,2972.00,NOT AUDITED,NOT PAID,UATH,,,,,Dec-13,,,SIMON,IKO
MHL/FCT/0478/P/12/13/188,,,,,,26770.00,RT ANKLE SPRAIN (DISLOCATION),20170.00,NOT AUDITED,NOT PAID,UATH,,,,,Dec-13,,,SIMON,IKO
MHL/FCT/0478/P/12/13/010,,,,,4700.00,SEVERE MENORRHAGIA,6050.00,NOT AUDITED,NOT PAID,UATH,,,,,Dec-13,,,NATHAN,MARY ,MHL/FCT/0136/P/05/14/0015,,,,,,2000.00,ENDOW SPRAIN OF SHOULDEN,3200.00,NOT AUDITED,NOT PAID,LIMI HOSPITAL AND MATERNITY,,,,,May-14,,,ALAUSA,HAPPINESS ,,,,,,18650.00,,18500.00,NOT AUDITED,NOT PAID,,,,,,,SUBTOTAL, ,MHL/FCT/0546/P/05/14/018,,,,,1000.00,CYESIS,1000.00,NOT AUDITED,NOT PAID,GARKI HOSPITAL,,,,,May-14,,,HOSEA,NAWUAL ,MHL/FCT/0546/P/05/14/017,,,,1000.00,UTI IN PREGNANCY,1000.00,NOT AUDITED,NOT PAID,GARKI HOSPITAL,,,,May-14,,,AJAYI,KENECHI Fig 4. CSV File

Let

 $X \subseteq D$.

D is the data stored in the repository X is the data of interest extracted from D, i.e.,

A is the set of features of X K is the number of partitions of X R is the relationship that exists between A and

Conquers approach to split data. This function can be according to Ramsey Theory, contains patterns (both applied in three ways:

- It split D into smaller units, i.e., $D = \{D_1, D_2, ..., D_n\}$ D_n }, this is to ease the extraction of X.
- It is applied to split X into different categories: as: enrollment (X_e), fee-for-service (X_f), referrals (X_r) and Update (X_u) .
- It is also applied to each category of X to split it into smaller units, e.g., U_r from Federal Medical Centre Owo, Xe from University College Hospital Ibadan etc.
- Va is the value for an attribute, a, which is an element of A

Fa is an information mapping function or searching function that maps an object from D to a value Va, Fa: D → Va and also uses A to search for insights from X. X^C is the data of non-interest which is the complement of X, i.e., $X^{C} \subseteq D$ n is the number of elements in D, i.e., n = |D|

BDA is the big data analytics function.
BDA= [D:X, A, R,
$$\{Va|a \in A\}, \{Fa|a \in A\}, \{GD|1, 2, ..., k\}, XC]$$
 (1)

Where:

- GD(n, k) = (Combinatorial Principle)a)
- b) GD is used to partition a set of n objects into k nonempty subsets.
- c) Fa = $\{x \cap | \forall X \in D\}$ (Principle of Intersection of Set)
- d) Fa is used to search for x from the partitions of the set D.

G_D is a split function which implements the Divide and D which represents big data stored in MongoDB, regular and irregular), A, which are used to identify the insights in D. Also, there exist some relations, R, between D and A. This is represented mathematically

$$(D, A) \in R \tag{2}$$

This is read, D has the attributes, A. To extract X from D, D is partitioned into smaller units following from the Principle of Divide-and-Conquer $D = \{D1, D2, ..., D2, ..., D2, ...\}$ Dn $\{ Since X \subseteq D, \text{ this means, the features of } X \text{ are } \}$ common with some features of D, then X can be extracted by taking the intersection between X and D

$$\label{eq:linear_equation} \begin{array}{l} \ \ \, \sqcup \ \, X = \{(X \cap D1) \ U \ (X \cap D2) \ U \ ... \ U \ (X \cap Dn)\} \\ \ \ \, \sqcup \ \, X = \{X \cap (D1 \ U \ D2 \ U \ ... \ U \ Dn)\} \\ \ \ \, \sqcup \ \, X = \{X \cap \ \} \end{array}$$

But X is complex and highly unstructured and extracting the attributes, A of X would be difficult; hence, according to Divide-and-Conquer Approach, X must be partitioned such that each partition would have attributes. A.

$$X = X1, X1, X2, ..., Xn$$
 (3)

 \in R from equation (2).

Each partition could be further partitioned into n elements, i.e.,

 $X1 = \{x1, x1, x2, x3, ..., xn\} \ n\neq 0$

 $Xp = \{x1, x1, x2, x3, ..., xm\} \ m\neq 0$

According to Ramsey Theory, each of the 'Xs' contains $X = \{(Xe, Ae), (Xf, Af), (Xr, Ar), (Xu, Au)\}$ A which when identified, the analytics task becomes easier. Again, the identification of A makes it easier to But equation 5 can also be expressed as identify the relations R amongst the data which correspond to the associations in D (see equation 2). As stated earlier, analytics becomes the analysis of R, which in turn correspond to the analysis of the Using the values of equations 6 through 9 in 12 associations in the 'Xs'.

Using the categories of data listed in Table 1, we classify our 'Xs' as Enrollment (Xe), Fee-for-service (i.e., claims) (Xf), Referrals (Xr) and Update (Xu).

$$X = \{Xe, Xf, Xr, Xu\}$$
 (4)

and each category has different features, i.e.,

$$A = \{Ae, Af, Ar, Au\}$$
 (5)

$$Ae = \{Ae1, Ae1, Ae2, ..., Aen\}$$
 (6)

These (the Aes) are enrollment features: first name, family name, gender, date of birth, etc.

$$Af = \{Af1, Af1, Af2, ..., Afn\}$$
 (7)

These (the Afs) are fee-for-service features: amount billed, procedure codes, diagnoses, etc.

$$Ar = \{Ar1, Ar1, Ar2, ..., Arn\}$$
 (8)

These (the Ars) are referral features: referral code, secondary/tertiary health facility, primary health facility, etc.

$$Au = \{Au1, Au1, Au2, ..., Aun\}$$
 (9)

These (the Aus) are update features: new facility, new HMO, spouse, child, etc. From Association Rules Mining, we have $X \sqcup Y$, where X is the set of features of Y This also implies that

$$A \perp X$$
 (10)

Then, substituting the value of A from equation 5 and that of equation 4 in equation 10

(Ae, Af, Ar, Au) \bot (Xe, Xf, Xr, Xu) i.e.,

 $Ae \; \sqcup \; Xe, \, Af \; \llcorner \; Xf, \, Ar \; \sqcup \; Xr, \, Au \; \sqcup \; Xu$

 $(Ae1, Ae1, Ae2, ..., Aen) \perp Xe$

 $(Af1, Af1, Af2, ..., Afn) \sqcup Xf$

 $(Ar1, Ar1, Ar2, ..., Arn) \sqcup Xr$

 $(Au1, Au1, Au2, ..., Aun) \sqcup Xu$

Hence, for all X1, X1, X2... Xn ∈ X, there exist (X, A) Again, from Association Rule Mining, a context is a triple (X, A, R), where X and R are sets and $R \subseteq X \times$ A. The elements of G are called objects, and the elements of A are called attributes. For an arbitrary $x \in$ X, and $a \in A$, we note xRa, when x is related to a, i.e., $(x, a) \in R$. Then, equation 4 can be rewritten as

$$X = \{(Xe, Ae), (Xf, Af), (Xr, Ar), (Xu, Au)\}\$$
 (11)

$$A = Ae U Af U Ar U Au$$
 (12)

$$A = (13)$$

But $A \sqcup X$ in equation 10, then

$$X \sqcup$$
 (14)

Equation 1 can now be expressed as:

 $BDA = [D(k): X(k), A, R, \{Va \mid a \in A\}, \{Fa \mid a \in A\},\$ $\{GD \mid 1, 2, ..., k\}, XC\}$

 $D(k) \equiv \{X(k): A, R, \{Va \mid a \in A\}, \{Fa \mid a \in A\}, \{GD \mid 1, a \in A\}, \{GD \mid A\},$ 2,..., k}} UXC

 $X(k) \equiv \{XA: A, R, \{Va \mid a \in A\}, \{Fa \mid a \in A\}, \{GD \mid 1, a \in A\}, \{GD \mid A\}, \{$ 2,...,

Assumptions for the Model

(7) The model is based on the following assumptions:

- a) That the repository is not empty, i.e., $D \neq \{\emptyset\}$.
- b) That the size of the data stored in the repository is not zero, i.e., $|D| \neq 0$.
- c) That the data of interest is a subset of what is stored in the repository, i.e., $X \subseteq D$.
- d) That there exists a relationship between the data of interest and the respective attributes, i.e., (X, $A) \in \mathbb{R}$.
- e) That the set of attributes is not empty, i.e., $A \neq A$ {∅}.
- f) That there is no relationship between the data of non-interest and the attributes of the data of interest, i.e., $(XC, A) \notin R$.
- g) That there exists a relationship between that data in the repository and the attributes of the data of interest, i.e., $(D, A) \in R$.
- h) That there exist the data of interest in the repository, i.e., $X \cap D \neq \{\emptyset\}$.
- i) That there is no intersection between the data of interest and the data of non-interest, i.e., $X \cap XC$
- j) That the combination of data of interest and the data of non-interest is not empty, i.e., X U XC ≠ {ø}.

4. Results and Discussion

Language, MapReduce and MongoDB. The system and claims data yielded the highest accuracy while that comprised of four modules; user management, enrollment and referral lagged in the first set of enrollment processing, referral processing and claims experiments; but this was not seen in the second case. health insurance domain, the National Health Insurance the prototype system which implemented the model. Scheme in Nigeria was considered. The NHIS in Nigeria, unlike other countries, processes its data Abbreviations used in the Evaluation manually and this has led to delay in all its processes due to the recent upsurge in healthcare data in terms of the volume, velocity, variety and even veracity that is key in the healthcare industry.

To ascertain the accuracy of the model, the accuracy of each category of data (see Table 1) was tested. This was carried out via two sets of experiments using different sizes of data (71543, 115427, 279950, 396428). In the first instance, the number of nodes of the MapReduce framework in the rules generation phase was kept constant; while the reverse was the case in the second sets of experiments. From the data depicted in Table 2 and Table 3, and the graphs in Fig 5, Fig 6, the accuracy of the model tends to decrease as the volume (number of records in this case) of the data increases in the first set of experiments. The accuracy was always at the peak (90.47%) during the processing of the first case and dropped to the least value in the last case (83.36%). In the second set of experiments, accuracy increases as the volume of data increases. The accuracy was always the lowest (93.23%) during the processing of the first case and increased to the highest value (97.14%) in the last case. The accuracy tends to vary among the four categories of data. One major

cause of this was the different file formats in which the We implemented our model using Java Programming data exist. For instance, the processing of the updates processing. It has a standalone application that is used Based on this evaluation, the model has an average for the capturing of the manually submitted data. It accuracy of 87.08% for the first of experiments and preprocesses and exports the data for actual 95.22% in the second case. This was obtained after transformation by the web-based application. In order carrying out a different experiment which in totality to demonstrate the concept of big data analytics in the processed over ten million (10,000,000) records with

- NR: Number of Records
- CAE: Accuracy for the processing of Enrollment data at Constant number of nodes
- CAC: Accuracy for the processing of Claims data at Constant number of nodes
- CAR: Accuracy for the processing of Referrals data at Constant number of nodes
- CAU: Accuracy for the processing of Update data at Constant number of nodes
- VAE: Accuracy for the processing of Enrollment data at Varying number of nodes
- VAC: Accuracy for the processing of Claims data at Varying number of nodes
- VAR: Accuracy for the processing of Referrals data at Varying number of nodes
- VAU: Accuracy for the processing of Update data at Varying number of nodes
- CAA: Average Accuracy for the processing of data at Constant number of nodes
- VAA: Average Accuracy for the processing of data at Varying number of nodes
- Table 2. Accuracy for the Data Processing

Table 2. Accuracy for the Data Processing								
NR	CAE	CAC	CAR	CAU	VAE	VAC	VAR	VAU
71543.00	89.33	91.63	88.73	92.17	92.3	92.3	93.2	95.12
115427.00	86.37	90.97	87.96	89.58	93.42	93.73	94.49	95.58
279950.00	81.89	86.89	87.19	87.11	94.86	96.6	95.91	97.48
396428.00	77.90	85.89	85.12	84.52	96.18	97.55	96.85	97.99

Table 3. Average Accuracy for the Mo	del
--------------------------------------	-----

Data Category	CAA	VAA	
Enrollment	83.87	94.19	
Claims	88.85	95.05	
Referrals	87.25	95.11	
Updates	88.35	96.54	
Average	87.08	95.22	

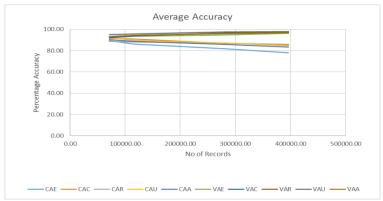


Fig 5. Graph for the accuracy of categories of NHIS data

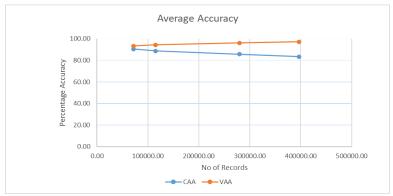


Fig 6. Graph for the average accuracy for the model

4.1 Discussion

its data manually and this has led to delay in all its challenges resulting from corruption. It is to this effect in terms of the volume, velocity, variety and even major Achilles heel, the system was evaluated based on veracity that is key in the healthcare industry. These accuracy. The model was evaluated based on the four delays in the NHIS have been a source of concern categories (see Table 1) of data: claims (fee-forconsidering the prominent role the healthcare insurance service), enrollment, referrals and updates. These data NHIS takes ninety (90) to three hundred and sixty-five evaluation is presented in the sections that follow. (365) days before it is completed [24], [26], [27]. twelve (12) months [12], [24], [27].

to delays in diagnosis and treatment. For NHIS to accuracy at this point was 95.22%. achieved its goal of providing easy access to healthcare

to improve the quality of healthcare, the problem of delay must be tackled. Tackling delays would have a The NHIS in Nigeria, unlike other countries, processes ripple effect as it would also tackle some of the processes due to the recent upsurge in healthcare data that this system was developed. Since delay is the play as a significant paymaster in the health sector. For were collected in both image (jpg and png), pdf, excel, instance, registration (new enrollment) and update csv, docx and txt formats. Over ten million records (addition of a dependant, change of provider etc.) in were used in this whole process. The result of the

Hence, many who are yet to register get discouraged by From the results, it is evident that the accuracy of the the harrowing and disheartening experiences of those model varies as the volume, velocity and variety of the who have started the process of documentation. The data also varies. This variation affects the entire implication is that the number embracing the scheme analytics process (i.e., the extraction, preprocessing, tends to be diminishing as more exits are recorded. analysis and visualization). This evaluation was done in Service providers complain of excessive delay in two phases: keeping the nodes in the MapReduce processing their claims leading to delay in the framework to be constant during rules generation and payments of their bills which takes a period of six (6) to varying the number of nodes in the MapReduce framework during rules generation. In the first instance, the evaluation shows that the average accuracy for the Most importantly, delay in NHIS reduces access to model was 87.08%. Much better and higher accuracy healthcare, and the outcome of this has a severe was obtained when the nodes in the MapReduce were negative effect on the health status of the populace due increased as the data was increasing, and the value of

volume of the data increases from 71543 records to payment which requires a cover note such as drug 396428 records in the first set of experiments. The prescription/dispense sheets, laboratory request/result it increases from 93.23% to 97.14% as the volume of recognition in order to extract the data before the MapReduce was deployed with a constant number invasive approach for our analytics. Further researches of nodes in the first set of experiments, the nodes are could employ invasive techniques such as deep learning exposed to too much pressure which could lead to the to also address this problem. Again, evaluating increases. As the number of nodes was increased as a providers is another area that subsequent research effort result of an increase in the volume of data, there was a could be geared to. significant improvement in the accuracy. This is because the processing algorithm is parallelized to allow the generation of rules for the processing of the different splits of the data to go on concurrently, thereby reducing the pressure that was exerted on few nodes as was the case with the first implementation.

The variety of data also affects the value of accuracy. As the volume and velocity of the data increase with varying formats of data from different sources, if the processing is maintained on the same number of nodes, the pressure on the nodes would be high, thereby [4] decreasing the accuracy of the model. The accuracy decreases as the variety increases due to the varying number of attributes that are required for the processing [5] and the different encoding systems employed by the different formats and sources of the data. This led to the loss of data which culminated into the generation of [6] complex rules and the consequent reduction of accuracy of the model.

5. Conclusion

In conclusion, this paper developed a mathematical model for the analytics of healthcare insurance data [8] using set theory for National Health Insurance Scheme data in Nigeria to address the delay in the existing manual data processing system. NHIS data is generated from different sources with varying formats and very [9] high volume which otherwise is difficult to achieve manually. This has arm data scientists with a tool for processing both structured and unstructured data with high volume and velocity. Practically, the research has [10] contributed to the development of a system that captures data in four (4) different format, generated at a higher rate with very large size so as to address the issues of data loss during data collection and storage. It has also, provided a platform for extracting meaningful insights from the data collected. The results show a highvalue accuracy. Thus, the processing time of NHIS data was reduced. This will enhance the flow of resources among stakeholders in the scheme and thus, a [12] steady improvement in the structures, processes and outcomes leading to improvement in the quality of services rendered to beneficiaries by the facility would be attained.

The accuracy decreases from 90.48% to 83.36% as the Further researches should consider the issue of coreverse was the case in the second set of experiments as sheet which analysing it would require handwriting the data increases. The implication of this is that when processing. Also, in this research we employed a nongeneration of complex rules as the volume of the data stakeholders' satisfaction of the services of the service

- Mirkin, B.: Core Concepts in Data Analysis: Summarization, Correlation, Visualization. Department of Computer Science and Information Systems, Birkbeck, University of London, Malet Street, London WC1E 7HX UK, 2010.
- Baldwin, D., Henderson, P.: The Importance of Mathematics to the Software Practitioner. IEEE Software, Vol. 19, No. 2, 112 – 111. (2002)
- Fang, R., Pouyanfar, S., Yang, Y., Chen, S. C. Iyengar, S. S.: Computational Health Informatics in Big Data Age: A Survey. ACM Comput. Surv., Vol. 5, 1-35. (2016)
- Sun, Z., Wang, P. P.: A Mathematical Foundation of Big Data. Journal of New Mathematics and Natural Computation, Vol. 13, No. 2, 83-99. (2017)
- Pothuganti, A.: Big Data Analytics: Hadoop-Map Reduce & NoSQL Databases. International Journal of Computer Science and Information Technologies, Vol. 6, No. 1, 522-527. (2015)
- Ebenezer, G., Durga, S.: Big Data Analytics in Healthcare: A Survey. ARPN Journal of Engineering and Applied Sciences, Vol. 10, No. 8, 3645-3650. (2015)
- Famutimi, R. F.: Design and Implementation of In-Memory Technique for Managing Big Data Complexities. An Unpublished Ph.D. Thesis Submitted to the Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria. (2018)
- Etobe, E. I., Etobe, U. E.: The National Health Insurance Scheme and Its Implication for Elderly Care in Nigeria. International Journal of Science and Research (IJSR), Vol. 4, No. 2, 128-132. (2015)
- Olaniyan, A. O.: Assessment of the Implementation of National Health Insurance Scheme (NHIS) in South-Western Nigeria. Unpublished PhD Thesis submitted to the Department of Public Administration, Obafemi Awolowo University, Ile-Ife, Nigeria. (2017)
- NHIS (National Health Insurance Scheme): National Health Insurance Scheme Operational Guidelines. 2013. Accessed on http://www.nhis.gov.ng/images/stories/hmoregister/NHIS_OP ERATIONAL GUIDELINES.pdf.
- Moyano, L. G., Appel, A. P., de Santana, V. F., Ito, M., dos Santos, T. D.: GraPhys: Understanding Health Care Insurance Data through Graph Analytics. Proceeding of WWW'16 Companion, April 1115, 2016, Montréal, Québec, Canada, 227-230. (2016)
- Eteng, F. O., Ijim-Agbor, U.: Understanding the Challenges and Prospects of Administering the National Health Insurance Scheme in Nigeria. International Journal of Humanities and Social Science Research, Vol. 2, No. 8, 43-48. (2016)
- Egbunu, C. O., Oluoha, O., Malik, A. R., Yange, S. T., Atsanan, S. P.: Queue Management in Non-Tertiary Hospitals

- for Improved Healthcare Service Delivery to Outpatients, International Journal of Applied Information Systems (IJAIS), Vol. 12, No. 31, 36-48, (2020).
- [14] Das, S., Sismanis, Y., Beyer, K. S., Gemulla, R., Haas, P. J., McPherson, J.: Ricardo: Integrating R and Hadoop. SIGMOD'10, June 6–11, 2010, Indianapolis, Indiana, USA, 987-998, (2010)
- [15] Ularu, E. U., Puican, F. C., Apostu, A., Velicanu, M.: Perspectives on Big Data and Big Data Analytics," Database Systems Journal, Vol. 3, No. 4, 3-14. (2012)
- [16] Nalini, N., Suvithavani, P.: A Study on Data Analytics: Internet of Things & Healthcare. International Journal of Computer Science and Mobile Computing, Vol. 6, No. 3, 20-27. (2017)
- [17] Chandola, V., Sukumar, S. R., Schryver, J.: Knowledge Discovery from Massive Healthcare Claims Data. KDD'13, August 11–14, 2013, Chicago, Illinois, USA, 1312-1320. (2013)
- [18] Chen, C. L., Zhang, C-Y.: Data-Intensive Applications, Challenges, Techniques and Technologies: A survey on Big Data. Information Sciences, Vol. 275, 314–347. (2014)
- [19] Fashoto, S. G., Owolabi, O., Sadiku, J., Gbadeyan, J. A.: [35] Application of Data Mining Technique for Fraud Detection in Health Insurance Scheme Using Knee-Point K-Means [36] Algorithm. Australian Journal of Basic and Applied Sciences, Vol. 7, No. 8, 140-144. (2013)
- [20] LaBrec, P. A.: Linking Healthcare Claims and Electronic Health Records (EHR) for Patient Management – Diabetes Case Study. Treo Solutions-3M Health Information Systems, NY, USA, 1-17. (2014)
 [38]
- [21] Lin, C., Huang, L., Chou, S. T., Liu, C., Cheng, H., Chiang, I.: Temporal Event Tracing on Big Healthcare Data Analytics. In the Proceedings of the 2014 IEEE International Congress on Big Data, IEEE Computer Society Washington, DC, USA, 281-287, (2014)
- [22] Li, J., Huang, K-Y., Jin, J., Shi, J.: A Survey on Statistical Methods for Healthcare Fraud Detection. Health Care [40] Management Science, Vol. 11, 275-287. (2008)
- [23] Bellazzi, R., Zupan, B.: Predictive Data Mining in Clinical Medicine: Current Issues and Guidelines, International Journal of Medical Informatics, Vol. 77, No. 2, 81-97. (2008)
- [24] Oyegoke, T. O.: Development of an Integrated Health Management System for National Health Insurance Scheme, An Unpublished M.Sc. Thesis Submitted to the Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria. (2015)
- [25] Borana, M., Giri, M., Kamble, S., Deshpande, K., Shubhangi, E. S.: Healthcare Data Analysis using Hadoop. International Research Journal of Engineering and Technology, Vol. 2, No. 7, 583-586. (2015)
- [26] Alimi, O. M., Binuyo, O. G., Gambo, I. P., Jimoh, K.: Realtime National Health Insurance Scheme (RNHIS): Means to Achieve Health for All. International Journal of Computer Science, Engineering and Applications, Vol. 6, No. 2, 1-8. [45] (2016)
- [27] Oyegoke, T. O., Ikono, R. N., Soriyan, H. A.: An Integrated Health Management System for National Health Insurance Scheme in Nigeria. Journal of Emerging Trends in Computing and Information Sciences, Vol. 8, No. 1, 30-40. (2017)
- [28] Yange, S. T., Soriyan, H. A., Oluoha, O.: A Fraud Detection System for Health Insurance in Nigeria, Journal of Health Informatics Africa, Vol. 6, No. 2, 64-73, (2019).
- [29] Yange, S. T., Soriyan, H. A., Oluoha, O.: Design of a Data Analytics Model for National Health Insurance Scheme.

- Journal of Health Informatics Africa, Vol. 4, No. 1, 42-50, (2017).
- [30] Yange, S. T., Soriyan, H. A., Oluoha, O.: A Schematic View of the Application of Big Data Analytics in Healthcare Crime Investigation. Journal of Health Informatics Africa, Vol. 4, No. 1, 32-41, (2017).
- 31] Yange, S. T., Gambo, I. P., Ikono, R. N., Oluoha, O., Soriyan, H. A.: An Implementation of a Repository for Healthcare Insurance Using MongoDB, Journal of Computer Science and Its Applications, Vol. 27, No. 1, 33-51, (2020).
- 32] Yange, S. T., Gambo, I. P., Ikono, R., Soriyan, H. A.: Multi-Nodal Implementation of Apriori Algorithm for Big Data Analytics using MapReduce. International Journal of Applied Information Systems (IJAIS), Vol. 12, No. 31, 8-28, (2020).
- [33] Sheriff, C. I., Naqishbandi, T., Geetha, A.: Healthcare Informatics and Analytics Framework," In the Proceedings of the 2015 International Conference on Computer Communication and Informatics (ICCCI -2015), Jan. 08 – 10, 2015, Coimbatore, INDIA, 1-6. (2015)
- [34] Agba, A. M., Ushie, E. M., Osuchukwu, N. C.: National Health Insurance Scheme (NHIS) and Employees' Access to Healthcare Services in Cross River State, Nigeria. Global Journal of Human Social Science, Vol. 10, No. 7, 9-16. (2010)
- [35] Sarraf, S., Ostadhashem, M.: Big Data Spark Solution for Functional Magnetic Resonance Imaging. (2016)
- [36] Karim, R., Sahay, R., Rebholz-Schuhmann, D.: A Scalable, Secure and Realtime Healthcare Analytics Framework with Apache Spark. In the Proceedings of 2nd Annual Insight Student Conference, NUIG, Ireland, Vol. 2, No. 1, 1-2. (2015)
 - [77] Karthika, I., Porkodi, K. P.: Fraud Claim Detection Using Spark. International Journal of Innovations in Engineering Research and Technology, Vol. 4, No. 2, 10-13. (2017)
- 38] Kareem, S., Ahmad, R. B., Sarlan, A. B.: Framework for the Identification of Fraudulent Health Insurance Claims using Association Rule Mining. 2017 IEEE Conference on Big Data and Analytics (ICBDA), 99-104. (2017)
- 39] Sun, Z., Wu, Z., Wang, P. P.: Calculus of Big Data. BAIS No. 17005, Research Centre of Big Data Analytics and Intelligent Systems, PNG UoT, 2017. DOI: 10.13140/RG.2.2.26177.66407
- 40] Duentsch, I., Guenter, G.: Rough Set Data Analysis: A Road to Non-Invasive Knowledge Discovery," Metoδos Publisher, Bangov, Bissendorf. (2000)
- [41] Pawlak, Z.: Rough Set Theory and its Applications to Data Analysis. Cybernetics and Systems: An International Journal, Vol. 29, No. 7, 661-688. (1998)
- 42] Zhang, H., Chen, G., Ooi, B. C., Tan, K. L., Zhang, M.: In-Memory Big Data Management and Processing: A survey. IEEE Transactions on Knowledge and Data Engineering, Vol. 27, 1920–1948. (2015)
- 43] Riza, S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Śle, D., Benítez, J. M.: Implementing Algorithms of Rough Set Theory and Fuzzy Rough Set Theory in the R package "RoughSets"," Information Sciences, Vol. 287, 68-89. (2014)
- 44] Zhang, J., Wong, S., Li, T., Pan, Y.: A Comparison of Parallel Large-Scale Knowledge Acquisition using Rough Set Theory on Different MapReduce Runtime Systems. International Journal of Approximate Reasoning, Vol. 55, No. 3, 896-907. (2014)
- 45] Sarkar, S., Baidya, S., Maiti, J.: Application of Rough Set Theory in Accident Analysis at Work: A Case Study. In 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN- IEEE), 245-250. (2017)
- 46] Das, A. K., Sengupta, S., Bhattacharyya, S.: A Group Incremental Feature Selection for Classification using Rough Set Theory Based Genetic Algorithm. Applied Soft Computing, Vol. 65, 400-411. (2018)