Implementation of C4.5 Method and Artificial Neural Networks to Predict Sales

Authors

  • Elsa Trisna Putri Universitas Putra Indonesia "YPTK" Padang

DOI:

https://doi.org/10.35134/jcsitech.v7i4.24

Keywords:

Sales, Building Materials, Data Mining C45, Artificial Neural Netwroks, Bagpropagation

Abstract

Technology and communication is currently growing along with the increasing needs of each individual in various fields such as: business, education, agriculture, health and technology. With the development of technology today, everyone can communicate and obtain and convey various information needed anytime and anywhere quickly, accurately and dynamically.Sales is an activity of buying and selling products or goods carried out between sellers and buyers, can interact within the same scope or online by using legal payment transactions. Building materials are materials used to design buildings such as houses, mosques, schools etc. For buildings, many natural materials are used such as: clay, sand, wood or bamboo, stone and others. In this study, the implementation of the c45 method and an artificial neural network to predict sales for the next year. The sale of building materials at the prayer shop, whose sales are not yet computerized by designing a computerized sales system. Toko Doa Mama is a building shop that sells various building materials such as: sand, paint, wood, or bamboo, saws, cement, roof tiles, gravel, nails, bricks, and others. But sales and marketing are still not computerized which results in frequent errors in calculating sales transactions, data collection of incoming goods and outgoing goods which are still in the form of archives, resulting in accumulation and lack of data security. Therefore, we need a computerized where the computer can help a job to be more effective and efficient

References

A, Hendini. (2016). PEMODELAN UML SISTEM INFORMASI MONITORING PENJUALAN DAN STOK BARANG. IV(2), 107–116.

Dristyan, F., Informasi, S., Buatan, K., Tiruan, S., & Fuzzy, L. (2018). PREDIKSI JUMLAH PENJUALAN KREDIT SEPEDA MOTOR. 9986(September)

Elisa, E., Azwanti, N., Komputer, T., & Batam, U. P. (2019). DOI : http://dx.doi.org/10.31869/rtj.v2i2.1430. 2(2).

Elisa, E. (2017). Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor-Faktor Penyebab Kecelakaan Kerja Kontruksi PT.Arupadhatu Adisesanti. Jurnal Online Informatika, 2(1), 36. https://doi.org/10.15575/join.v2i1.71

Engineering, I., Hadi, F., Diana, Y., & Komputer, F. I. (2020). PENGKLUSTERAN PENJUALAN BAHAN BANGUNAN MENGGUNAKAN ALGORITMA K-MEANS. 4(1), 22–28.

Fandi, F., & Imaniawan, D. (2019). Rancang Bangun Aplikasi Penjualan Material Bangunan. 5(2), 101–112

Giawa, D. I. (2017). METODE BACKPROPAGATION ( Studi Kasus : CV . Bryan Ponsel ). 12, 162–167.

Ginting, S., & Untuk, C. (2020). Implementasi algoritma c4.5 untuk memprediksi keterlambatan pembayaran sumbangan pembangunan pendidikan sekolah menggunakan python. 10, 36–44.

Hikma Widayu. (2017). DATA MINING UNTUK MEMPREDIKSI JENIS TRANSAKSI NASABAH PADA KOPERASI SIMPAN PINJAM DENGAN. 1(2), 32–37.

Mardi, Y., Gajah, J., No, M., & Barat, S. (n.d.). Jurnal Edik Informatika Data Mining : Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ) . Jurnal Edik Informatik

Penyakit, D., Berdasarkan, M., & Usia, R. (2019). PENERAPAN ALGORITMA K-MEANS UNTUK PENGELOMPOKAN. 2(1).

Pratama, A. S., Darwati, I., & Informatika, M. (2017). Perancangan Program Berbasis Web Pada Penjualan Bahan Bangunan. III(2), 25–30

Ramadhan, R., Dyah, S., Wardani, K., Amrozi, Y., & Spiral, M. (2020). Quo vadis pengembangan rekayasa perangkat lunak. 3(2).

Sovia, R., Yanto, M., & Melati, P. (2020). Prediksi Jumlah Kunjungan Wisata Mancanegara Dengan Algoritma Backpropagation. 4(April), 355–362. https://doi.org/10.30865/mib.v4i2.2048

Syafitri, Y., Informatika, J. M., Diagram, A., & Diagram, S. (2016). PEMODELAN PERANGKAT LUNAK BERBASIS UML UNTUK PENGEMBANGAN SISTEM PEMASARAN AKBAR ENTERTAINMENT. 12(1), 31–39.

Yanto, M., Praja, E., Mandala, W., & Putri, D. E. (2018). Peramalan Penjualan Pada Toko Retail Menggunakan Algoritma Backpropagation Neural Network. 2(3), 110

Cheriyan, S., Ibrahim, S., Mohanan, S., & Treesa, S. (2018, August). Intelligent Sales Prediction Using Machine Learning Techniques. In 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) (pp. 53-58). IEEE.

Katrina, W., Damanik, H. J., Parhusip, F., Hartama, D., Windarto, A. P., & Wanto, A. (2019, August). C. 45 Classification Rules Model for Determining Students Level of Understanding of the Subject. In Journal of Physics: Conference Series (Vol. 1255, No. 1, p. 012005). IOP Publishing.

Nasser, I. M., Al-Shawwa, M. O., & Abu-Naser, S. S. (2019). A Proposed Artificial Neural Network for Predicting Movies Rates Category.

Sovia, R., Yanto, M., Budiman, A., Mayola, L., & Saputra, D. (2019). Backpropagation neural network prediction for cryptocurrency bitcoin prices. Journal of Physics: Conference Series, 1339(1), 012060. doi:10.1088/1742-6596/1339/1/012060.

Sugiyarti, E., Jasmi, K. A., Basiron, B., Huda, M., Shankar, K., & Maseleno, A. (2018). Decision support system of scholarship grantee selection using data mining. International Journal of Pure and Applied Mathematics, 119(15), 2239-2249

Downloads

Published

2021-10-31

How to Cite

Putri, E. T. . (2021). Implementation of C4.5 Method and Artificial Neural Networks to Predict Sales. Journal of Computer Scine and Information Technology, 7(4), 110–115. https://doi.org/10.35134/jcsitech.v7i4.24