Application of Data Mining Clustering the Development of Covid-19 Using K-Medoids Method
DOI:
https://doi.org/10.35134/jcsitech.v8i1.29Keywords:
K-Medoids, Clustering, Determining, Data Mining, Covid-19.Abstract
At the beginning of March, Indonesia was hit by the entry of the corona virus (covid) outbreak. Every day the cases of the spread of covid-19 in Indonesia continue to increase. The public is asked to carry out social distancing in order to break the chain of the spread of Covid-19 which is spread in various regions in Indonesia. Therefore, the data that has been accommodated is certainly a lot, from the data it can be seen that the patterns of determining the grouping of the spread of Covid-19 are based on test scores. Public. K-Medoids is a partitional clustering analytical method that aims to get a set of k-clusters among the data that is closest to an object in grouping a data. The results of the study of grouping the spread of the new covid-19 show that people come from various regions in Indonesia. Characteristics with a body temperature above 36.9 C and accompanied by fever and continuous cough show one of the symptoms of Covid-19.
References
Rizkiana Prima, R., Yashintia Arien, E., & Sutikno Departemen Statistika, F. S. Analisis Cluster Virus Corona (COVID-19) di Indonesia pada 2 Maret 2020–12 April 2020 dengan Metode K-Means Clustering.
Dwitri, N., Tampubolon, J. A., Prayoga, S., Zer, F. I. R., & Hartama, D. (2020). Penerapan algoritma K-Means dalam menentukan tingkat penyebaran pandemi COVID-19 di Indonesia. JurTI (Jurnal Teknologi Informasi), 4(1), 128-132.
Rosyanti, L., & Hadi, I. (2020). Dampak psikologis dalam memberikan perawatan dan layanan kesehatan pasien COVID-19 pada tenaga profesional kesehatan. Health Information: Jurnal Penelitian, 12(1), 107-130.
Junaedi, D., & Salistia, F. (2020). Dampak Pandemi Covid-19 Terhadap Pasar Modal Di Indonesia. Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah, 2(2), 109-131.
Sindi, S., Ningse, W. R. O., Sihombing, I. A., Zer, F. I. R., & Hartama, D. (2020). Analisis algoritma k-medoids clustering dalam pengelompokan penyebaran covid-19 di indonesia. JurTI (Jurnal Teknologi Informasi), 4(1), 166-173.
Ardiansyah, A. H., Nugroho, W., Alfiyah, N. H., Handoko, R. A., & Bakhtiar, M. A. (2020, August). Penerapan Data Mining Menggunakan Metode Clustering untuk Menentukan Status Provinsi di Indonesia 2020. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 4, No. 3, pp. 329-333).
Pramesti, D. F., Furqon, M. T., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Mandala, E. P. W., Yanto, M., & Putri, D. E. (2018). Aplikasi Pengelompokan Penjualan Dengan Clustering Data Mining Pada Toko Retail Kota Padang. Prosiding SISFOTEK, 2(1), 1-8.
Putri, D. E. (2015). Metode Non Hierarchy Algoritma K-Means Dalam Mengelompokkan Tingkat Kelarisan Barang (Studi Kasus: Koperasi Keluarga Besar Semen Padang). Prosiding Senatkom, 1.
Gunawan, I., Anggraeni, G., Rini, E. S., Putri, Y. M., & Zikri, Y. K. (2020). Klasterisasi provinsi di Indonesia berbasis perkembangan kasus Covid-19 menggunakan metode K-Medoids. SENATIK, 301-306.
Kurniawan, A. (2012). Rekayasa Perangkat Lunak Aplikasi Penjualan Pada Toko Story Time Factory Outlet Menggunakan Pemrogram Java. Jurnal, Universitas Andalas, hlm, 3.
Mandala, E. P. W. (2015). Web Programing, Project 1 epwm forum. Yogyakarta: Andi.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Computer Science and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.